Alkalophilic cellulases production from Stachybotrys microspora and its potential application in denim biostoning

Authors

  • Ines Ben Hmad Centre of Biotechnology of Sfax
  • Hafedh Belghith Centre of Biotechnology of Sfax
  • Ali Gargouri Centre of Biotechnology of Sfax

Keywords:

Alkalophilic endoglucanses; Lignocellulosic waste; Stachybotrys microspora; denim biostoning

Abstract

The aged look of denim can be the result of the trap of non-homogenous indigo dyed cellulose microfibers by the mechanical and enzymes actions. However, the major problem is the re-deposition of eleminated indigo dye on the denim fabrics during biostoning with acid endoglucanases.This work aims to study the production profile of endoglucanases by Stachybotrys microspora in the presence of lignocellulosic biomass wastes (sugarcane bagasse and macro-algae) at medium initial pH7. The produced endoglucanases by the Stachybotrys strain were monitored by enzymatic assay and zymogram analysis. The best carbon source is sugarcane bagasse with an optimum production at day7. More interstingly, the zymogram analysis confirmed that a conditional expression of an alkaline cellulase was displayed on the sugarcane bagasse based medium and revealed that sugarcane bagasse and macro-algae of the culture medium directed a differential induction of alkalophilic and acidic endoglucanases. Comparing the denim bio-stoning, with our crude enzyme to those with commercial ones showed significantly better results.

This research shows that alkalophilic endoglucanases from Stachybotrys microspora can be considered an efficient additive for denim bio-stoning applications.

10.5281/zenodo.11487313

References

References

Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., Azzazy, H. M. E. S. (2023) Enzyme Immobilization Technologies and Industrial Applications. ACS Omega, 8, 5184−96. https://doi.org/10.1021/acsomega.

Ostovan, A., Arabi, M., Wang, Y., Li, J., Li, B., Wang, X. Chen L. (2022) Greenificated Molecularly Imprinted Materials for Advanced Applications. Advanced Materials, 34, 1-32. DOI: 10.1002/adma.202203154.

Lehrhofer, A. F., Goto, T., Kawada, T., Rosenau, T., Hettegger, H. (2022) The in vitro synthesis of cellulose A mini-review. Carbohydrate Polymers, 285, 119222.https://doi.org/10.1016/j.carbpol.2022.119222.

Thapa, S., Mishra, J., Arora, N., Mishra, P., Li, H., O’ Hair, J., Bhatti, S., Zhou, S. (2020) Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Reviews in Environmental Sciences and Biotechnology, 19, 621-648. https://doi.org/10.1007/s11157-020-09536-y.

Gupta, A., Gupta, R., Singh, R. L. Microbes and Environment Principles and Applications of Environmental Biotechnology for a Sustainable Future. In Singh, R. L. (ed.). Applied Environmental Science and Engineering for a Sustainable Future. Springer Science+Business Media Singapore, (2017), 43-84. DOI 10.1007/978-981-10-1866-4_3.

Balla, A., Silini, A., Cherif-Silini, H, Bouket, A. C., Boudechicha, A., Luptakova, L., Alenezi, F. N., Belbahri, L., (2022) Screening of Cellulolytic Bacteria from Various Ecosystems and Their Cellulases Production under Multi-Stress Conditions. Catalysts, 769, 1-29.https://doi.org/10.3390/catal12070769.

Jayasekara, S., Ratnayake, R. Microbial Cellulases: An Overview and Applications. In: Pascual, A. R., Martín, M. E. E. (Eds.). Cellulose. (2019). DOI: 10.5772/intechopen.84531.

Ben Hmad, I., Gargouri, A., (2017) Neutral and alkaline cellulases: Production, engineering, and Applications. Journal of Basic Microbiology, 9999, 1-6. DOI: 10.1002/jobm.201700111.

Khan, M. K. R., Jintun, S. (2021) Sustainability Issues of Various Denim Washing Methods. Textile and Leather Review, 4, 96-110. https://doi.org/10.31881/TLR.2021.01.

Gusakov, A.V., Sinitsyn, A. P., Markov, A.V., Sinitsyna, O.A., Ankudimova, N.V., Berlin, A. G., (2000a) Study of protein adsorption on indigo particles confirms the existence of enzyme–indigo interaction sites in cellulase molecules. Journal of Biotechnology, 87, 83–90.

Anish, R., Rahman, M S, Rao M., (2007) Application of CellulasesFrom an AlkalothermophilicThermomonospora sp. in Biopolishing of Denims. Biotechnology and Bioengineering, 96, 48-56.

Juturu,V., Wu, J. C. (2014)Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews 33, 188-203.https://doi.org/10.1016/j.rser.2014.01.077.

Hoque, M. T., Mazumder, N. S., Islam, M. T. Enzymatic Wet Processing. In: Rather, L. J., Shabbir, M., Haji, A. (eds.). Sustainable Practices in the Textile Industry. Scrivener Publishing LLC, (2021), pp. 87–110.

BenHmad, I., Abdeljalil, S., Saibi, W., Amouri, B., Gargouri, A., (2014) Medium initial pH and carbon source stimulate differential alkaline cellulase time course production in Stachybotrysmicrospora. Applied and Biochemical Biotechnology, 172, 2640–2649.

Rousk, J., Brookes, P. C., Bååth, E., (2009) Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Applied and Environmental Microbiology,75, 1589–1596.

BenHmad, I., Boudabbous, M., Belghith, H., Gargouri, A., (2017) A novel ionic liquid-stable halophilicendoglucanase from Stachybotrysmicrospora. Process and Biochemistry, 54, 59–66.

Benhmad, I., Boudabbous, M., Yaîch, A., Rebai, M., Gargouri, A., (2016) A novel, neutral, halophile Stachybotrysmicrospora-based endoglucanase active impact on β-glucan. Bioprocess. Biosyst. Eng., 39, 685–693.

Amouri, B., Gargouri, A., (2006) Characterization of a novel β-glucosidase from a Stachybotrysstrain. Biochemical Engineering Journal, 32, 191–97.

Mandels, M., Weber, J., (1969) The production of cellulases.Advances in Chemistry,95, 391.

Miller, G. L., (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

Bradford, M. M., (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72, 248–254.

Laemmli, U. K., Favre, M., (1973) Maturation of the head of bacteriophage T4: I. DNA packaging events. Journal of Molecular Biology, 80, 575–592.

Ayadi, I., Belghith, H., Gargouri, A., Guerfali, M., (2019) Utilization of Wheat Bran Acid Hydrolysate by RhodotorulamucilaginosaY-MG1 for Microbial Lipid Production as Feedstock for Biodiesel Synthesis. BioMed Research International, 2019, 1-11. https://doi.org/10.1155/2019/3213521.

Zhang, T., Liu, H., Lv, B., Li, C., (2020) Regulating Strategies for Producing Carbohydrate Active Enzymes by Filamentous Fungal Cell Factories. Frontiers in Bioengineering and Biotechnology, 8, 1-15. doi: 10.3389/fbioe.2020.00691.

Kiesenhofer, D., Mach-Aigner, A., Mach, R., Understanding the mechanism of carbon catabolite repression to increase protein production in filamentous fungi. In: Schmoll, M., Dattenböck, C. (Eds). Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. (Cham: Springer), (2016), pp 275–288. Doi: 10.1007/978-3-319-27951-0_12.

Ladeira, S. A., Cruz, E., Delatorre, A. B., Barbosa, J. B., Martins, M. L. L., (2015) Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron. Journal of Biotechnology 18, 110-115. http://dx.doi.org/10.1016/j.ejbt.2014.12.008.

Ellilä, S., Fonseca, L., Uchima, C., Cota, J., Goldman, G. H., Saloheimo, M., Sacon, V., Siika aho, M., (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnology and Biofuels, 30, 1-17. DOI 10.1186/s13068-017-0717-0.

Ferreira, F. L., Dall’Antonia, C. B., Shiga, E. A., Alvim, L. J., Pessoni, R. A. B., (2018) Sugarcane bagasse as a source of carbon for enzyme production by filamentous fungi. Hoehnea. 45, 134-142. http://dx.doi.org/10.1590/2236-8906-44/2017.

Srivastava, N., Mohammad, A., Singh, R., Srivastava, M., Syed, A., Pal, D. B., Elgorban, A. M., Mishra, P. K., Gupta, V. K., (2021). Evaluation of enhanced production of cellulose deconstructing enzyme using natural and alkali pretreated sugar cane bagasse under the influence of graphene oxide. Bioresour. Technol., 342, 126015. https://doi.org/10.1016/j.biortech.2021.126015.

Moretti, M. M. S., Bocchini-Martins, D. A., Da Silva, R., Rodrigues, A., Sette, L. D., Gomes, E., (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology 43, 1062–1071.

Luo, Z., Fan, Y., Li, Q., Han, B., Liu, Y., Li, S., Qiu, H., Pang, Z., (2017) Isolation, purification and characterization of 5′-phosphodiesterase from Aspergillus fumigatus. PLoS One, 12, 1-13.

Ahmed, J.,Taslim, A. U., Raihan, T., Sohag, M. M. H.,Suhani, M. H. S., Qadri, F., Azad, A. K., (2023) Characterization of an endo-beta-1,4glucanase gene from paper-degrading and denim bio-stoning cellulase producing Aspergillus isolates. Biotechnology and Applied Biochemistry, 70, 1057–1071. DOI: 10.1002/bab.2420.

Belghith, H., Ellouz-Chaabouni, S., Gargouri, A., (2001) Biostoning of denims by Penicilliumoccitanis(Pol6) cellulases. Journal of Biotechnology, 89, 257–262.

Behera, B.C., Sethi, B.K., Mishra, R.R., Dutta, S.K., Thatoi, H.N., (2017) Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15, 197-210.

Sukumaran, R. K., Singhania, R. R., Pandey, A., (2005) Microbial_cellulases Production, applications and challenges. Journal of Science and Industrial Research, 64, 832-844.

Andreaus, J., Campos, R., Gubitz, G. Cavaco-Paulo, A., (2000) Influence of cellulases on indigo backstaining. Textile Research Journal, 70, 628- 632.

Anish, R., Rahman, M. S., Rao, M., (2006) Application of CellulasesFrom an AlkalothermophilicThermomonosporasp. in Biopolishing of Denims. Biotechnology and Bioengineering, 96, 48-56.DOI 10.1002/bit.

Downloads

Published

2024-05-04

How to Cite

Ben Hmad, I., Belghith, H., & Gargouri, A. (2024). Alkalophilic cellulases production from Stachybotrys microspora and its potential application in denim biostoning . Algerian Journal of Chemical Engineering AJCE, 1(1), 08–17. Retrieved from https://journal.acse.science/index.php/ajce/article/view/184

Issue

Section

Articles