The main treatments used for SARS-CoV-2 patients
Keywords:
SARS-CoV 2, antivirals, immunomodulators, corticosteroid therapy and plasma therapy.Abstract
Alors que la pandémie de COVID-19 continue de ravager le monde et de menacer la vie des gens, le traitement efficace des patients infectés a été l’une des principales préoccupations des travailleurs médicaux du monde entier.
Actuellement, aucun médicament n’est recommandé pour traiter la COVID-19 et aucun remède n’est disponible. Les chercheurs testent une variété de traitements possibles.
Plusieurs médicaments font l’objet de recherches dans différents pays. La plupart sont des médicaments existants qui sont testés contre le virus.
Les produits pharmaceutiques faisant l’objet d’essais cliniques pour évaluer leur innocuité et leur efficacité en tant que traitements potentiels de la COVID-19 comprennent l’analogue nucléotidique antiviral remdesivir, les interférons systémiques et en particulier l’interféron β-1a, la combinaison antivirale lopinavir/ritonavir, l’antipaludéen chloroquine/hydroxychloroquine et les anticorps monoclonaux dirigés contre des composants du système immunitaire tels que l’interleukine-6 (IL-6) et l’IL-4. Il est important que les traitements potentiels soient soigneusement évalués dans des essais contrôlés randomisés.
References
Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity, 2020; 52(4), 583-589. https://doi.org/10.1016/j.immuni. 2020.03.007
Khan N, Fahad S. Critical review of the present situation of corona virus in China. Available at SSRN. 2020; 3543177.
Memberships M, Join T. Guidance on Coronavirus Disease 2019 (COVID-19) for Transplant Clinicians Updated 27 February 2020.
World Health Organization (a). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Retrieved March 28, 2020 from https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
Matthay MA, Aldrich JM, Gotts JE. Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respir Med 2020. DOI: 10.1016/S2213-2600(20)30127-2. 18.
Kalil AC. Treating COVID-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA 2020. DOI: 10.1001/jama.2020.4742.
Gautret P, Lagier J-C. Parolam P et al. Clinical and Microbiological Effect of a Combination Of Hydroxychloroquine And Azithromycin In 80 Covid-19 Patients With At Least A Six-Day Follow Up: A Pilot Observational Study. Travel Medicine and Infectious Disease (2020), doi: https://doi.org/10.1016/j.tmaid.2020.101663.
Pirnay G, Dantier B, Tourid Wet al. Beneficial effect of the hydroxychloroquine/azithromycin combination in elderly patients with COVID-19: Results of an observational study; Le Pharmacien Hospitalier & Clinicien. 2020. DOI : 10.1016/j.phclin.2020.06.001
Vidal Dictionary (2019). 95th edition, Vidal edition, France
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395: 1569–78
Leneva IA, Russell RJ, Boriskin YS, et al. “Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol”. Antiviral Research. 2009; 81 (2): 132–40. doi:10.1016/j.antiviral.2008.10.009. PMID 19028526.
Pécheur EI, Borisevich V, Halfmann P, et al. “The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses”. Journal of Virology. 2016; 90 (6): 3086–92. doi:10.1128/JVI.02077-15. PMC 4810626. PMID 26739045.
Boriskin YS, Pécheur EI, Polyak SJ. “Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection”. Virology Journal. 2006; 3: 56. doi:10.1186/1743-422X-3-56. PMC 1559594. PMID 16854226.
Shi L, Xiong H, He J, et al. “Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo”. Archives of Virology. 2007; 152 (8): 1447–55. doi:10.1007/s00705-007-0974-5. PMID 17497238.
Glushkov RG, Gus’kova TA, Krylova LIu, et al. “[Mechanisms of arbidole’s immunomodulating action]”. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk (in Russian) 1999; (3): 36–40. PMID 10222830.
Furuta Y, Takahashi K, Shiraki K, et al.“T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections”. Antiviral Research. 2009; 82 (3): 95–102. doi:10.1016/j.antiviral.2009.02.198. PMID 19428599.
Furuta Y, Gowen BB, Takahashi K,. “Favipiravir (T-705), a novel viral RNA polymerase inhibitor”. Antiviral Research. 2013; 100 (2): 446–54. doi:10.1016/j.antiviral.2013.09.015. PMC 3880838. PMID 24084488.
Caroline AL, Powell DS, Bethel LM, et al. “Broad spectrum antiviral activity of favipiravir (T-705): protection from highly lethal inhalational Rift Valley Fever”. PLoS Neglected Tropical Diseases. 2014; 8 (4): e2790. doi:10.1371/journal.pntd.0002790. PMC 3983105. PMID 24722586.
Yamada K, Noguchi K, Komeno T, et al. “Efficacy of Favipiravir (T-705) in Rabies Postexposure Prophylaxis”. The Journal of Infectious Diseases. 2016; 213 (8): 1253–61. doi:10.1093/infdis/jiv586. PMC 4799667. PMID 26655300.
Murphy J, Sifri CD, Pruitt R, et al. “Human Rabies – Virginia, 2017”. MMWR. Morbidity and Mortality Weekly Report. 2019; 67(5152): 1410–1414. doi:10.15585/mmwr.mm675152a2. PMC 6334827. PMID 30605446.
Khamitov RA, Loginova S, Shchukina VN, et al. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol. 2008; 53:9–13.
Boriskin YS, Leneva IA, Pecheur EI, et al. a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem. 2008; 15:997–1005. doi: 10.2174/092986708784049658.
Blaising J, Polyak SJ, Pecheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014; 107:84–94. doi: 10.1016/j.antiviral.2014.04.006.
Gagarinova VM, Ignat'eva GS, Sinitskaia LV, et al. The new chemical preparation arbidol: its prophylactic efficacy during influenza epidemics. Zhural Mikrobiologii Epidemiologii I Immunobiologii. 1993; 5:40‐3.
Hennigan S, Kavanaugh A. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis. Ther Clin Risk Manag. 2008; 4: 767-775
Swerdlow DI, Holmes MV, Kuchenbaecker KB, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012; 379: 1214-1224.
Kaur S, Bansal Y, Kumar R, et al. A panoramic review of IL‐6: structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020; 28 (5):115327.
Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017; 377: 317-328.
Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019; 15: 813-822
Antonetti F, Finocchiaro O, Mascia M, et al. A Comparison of the Biologic Activity of Two Recombinant IFN-beta Preparations Used in the Treatment of Relapsing-Remitting Multiple Sclerosis. J. Interferon Cytokine Res. 2002; 22(12):1181–1184.
Markowitz Clyde E. Interferon-Beta: Mechanism of Action and Dosing Issues. Neurology 2007; 68(24 Suppl 4):S8-11.
Food and Drug Administration. 2012. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103950s5136lbl.pdf. Accessed April 8, 2020.
Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior Phase III trial. Crit Care Med. 2016; 44(2):275-281. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26584195.
Hirvikoski T, Nordenström A, Lindholm T, et al. Cognitive Functions in Children at Risk for Congenital Adrenal Hyperplasia Treated Prenatally with Dexamethasone. The Journal of Clinical Endocrinology & Metabolism. 2007; 92, 2 : 542–548.
World Health Organization (b) welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients on 16 Jun 2020. Welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients. Anakinra (Kineret) Prescribing Information.
Piechotta V, Chai KL, Valk SJ, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database of Systematic Reviews 2020; Issue 7. Art. No.: CD013600. DOI: 10.1002/14651858.CD013600.pub2.
Savarino A, Boelaert JR, Cassone A et al. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet Infectious Diseases. 2003; 3 (11): 722-727.
Jung H, Bobba R, Su J, et al. The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. Arthritis & Rheumatism. 2010; (62), 3: 863–868 DOI 10.1002/art.27289.
Marmor MF, Kellner U, Lai TY, et al. American Academy of OphthalmologyRecommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy. Ophthalmology. 2016; 123 (6): pp. 1386-1394, 10.1016/j.ophtha.2016.01.058.
Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020; 10.1093/cid/ciaa237.
Tran DH, Ugamata R, Hirose T, et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. The Journal of Antibiotics. 2019; 72: 759–768.
Le Bideau AMJ, Duflot I, Jardot P, et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbial Pathogenesis.2020 ; 145 : 104228
Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 2020; 323(24):2493-2502. doi:10.1001/jama.2020.8630.
Mehra MR, Desai S, Ruschitzka F, et al. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. 2020; https://doi.org/10.1016/ S0140-6736(20)31180-6
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 — Preliminary Report; The New England Journal of Medicine, 2020; DOI: 10.1056/NEJMoa2007764.
Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19, The new england journal of medicine, 2020; 382 no. 19
Lian N, Xie H, Lin S, et al. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clinical Microbiology and Infectious Diseases. 2020; DOI:https://doi.org/10.1016/j.cmi.2020.04.026.
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery. 2020 Feb doi: 10.1038/d41573-020-00016-0.
Chunguang Y, Chunjin K, Daoyuan Y, et al. Effectiveness of Arbidol for COVID-19 Prevention in Health. Professionals Front. Public Health. 2020; https://doi.org/10.3389/fpubh.2020.00249.
Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID‐19: A single center experience. J Med Virol . 2020; 10.1002/jmv.25801.
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. PNAS May 19, 2020; 117 (20) 10970-10975
Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020; https://doi.org/10.1016/ S2665-9913(20)30173-9.
Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trials. Lancet. 2020; 395(10238):1695-1704. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32401715.
Davoudi-Monfared E, Rahmani H, Khalili H, et al. Efficacy and Safety of Interferon Β-1a In Treatment of Severe COVID-19: A randomized clinical trial. medRxiv preprint. 2020; doi: https://doi.org/10.1101/2020.05.28.20116467.
Zhou Q, Wei X, Xiang X, et al. Interferon-a2b treatment for COVID-19. medRxiv. 2020; Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.04.06.20042580v1.
Horby P, Lim WS, Emberson J, and the, RECOVERY Collaborative Group. Effect of dexamethasone in hospitalized patients with COVID-19: Preliminary report. medRxiv. 2020 Jun 22.
Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020; 2 (7): e393–400.
Dimopoulos G, Mast Q, Markou N, et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Clinical and Translational Report. 2020; 28 (1) : 117-123.e1
Joyner MJ, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. J Clin Invest. 2020; Available at: https://www.ncbi.nlm.nih.gov/pubmed/32525844.
Zeng QL, Yu ZJ, Gou JJ, et al. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in Patients with Coronavirus Disease 2019. The Journal of Infectious Diseases. 2020; 22 (1) 1: 38–43, https://doi.org/10.1093/infdis/jiaa228.
Amin I, Shafquat R, Sabina K, et al. Convalescent plasma therapy in the treatment of COVID-19: Practical considerations: Correspondence. International Journal of Surgery. 2020; 79: 204-205.
World Health Organisation (c). Clinical management of COVID-19. Interim guidance. WHO; 2020. Available from: https://www.who.int/publications/i/item/clinical-management-ofcovid-19.
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020 May 22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Algerian journal of Biosciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.